
SRDP Database & API
Release 0.1

Evan Jones

Oct 26, 2022

CONTENTS

1 What is SRDP? 1

2 Why Do We Provide a Database API? 3

3 How are the Database and API implemented? 5

4 Contents 7
4.1 Codebase Overview . 7
4.2 Developer Manual . 9
4.3 API Documentation . 10

i

ii

CHAPTER

ONE

WHAT IS SRDP?

Strategies of Resistance Data Project (SRDP) is a global dataset on organizational behavior in self-determination
disputes. It is actor-focused and spans periods of relative peace and violence in self-determination conflicts. By linking
tactics to specific actors in broader campaigns for political change, we can better understand how these struggles unfold
over time, and the conditions under which organizations use conventional politics, violent tactics, nonviolent tactics,
or some combination of these.

The previous SRDP comprises 1,124 organizations participating in movements for greater national self-determination
around the world, from 1960 to 2005. An update of the dataset is currently underway and will bring all data up to 2020
as well as expand the type of colletions available.

1

SRDP Database & API, Release 0.1

2 Chapter 1. What is SRDP?

CHAPTER

TWO

WHY DO WE PROVIDE A DATABASE API?

The goal of storing the project data in a relational database and providing an application programming interface (API)
on top of that database is threefold:

• Create a single source of truth for all data - previously data has been stored across various providers (drop-
box, googlesheets, local devices) and updated in multiple places, leading to increased prevalance of errors and
conflicting versions.

• Make it easier for project maintainers and end users to retrieve the data they need, in the desired format and
scope, in a programming language of their choice.

• Provide a service layer for project developers to build additional tools on top of (e.g. web UI for labeling, data
ingestion pipelines, user-facing website, etc.)

The first version of this API provides just enough functionality such as basic Create, Retrieve, Update, Delete (CRUD)
actions to achieve all three of these, but certainly is not a full-fledged API. For example, most endpoints do not accept
query parameters to customize requests.

The hope is that these documents serve as a jumping off point for future developers to further expand the service.

Check out the directory section for information on the project file structure. Information on configuring, launching,
administrating, and updating source code is available in the Developer Manual section.

3

SRDP Database & API, Release 0.1

4 Chapter 2. Why Do We Provide a Database API?

CHAPTER

THREE

HOW ARE THE DATABASE AND API IMPLEMENTED?

Tech Stack

The relational database uses an MySQL 5.7 image and is containerized. The API app is also containerized and built
using Python Flask for routing plus Flask-SQLAlchemy to build the database models. The API endpoints are fully
documented in a Swagger UI according to OpenAPI specification with the help of the flask-apispec. Docker Compose
handles container orchestration and deployment. The database itself is persisted to volume (data persists even after
starting and stopping of the container)

Table 1: Tech Stack
Purpose Tool Documentation
Containerization Docker https://docs.docker.com/
Container Orchestration
and Deployment

Docker Compose https://docs.docker.com/compose/

RDBMS MySQL 5.7 https://dev.mysql.com/doc/refman/5.7/en/
Web Dev Flask https://flask.palletsprojects.com/en/2.1.x/
ORM Flask-SQLAlchemy,

SQLAlchemy
https://flask-sqlalchemy.palletsprojects.com/en/2.x/

SQLAlchemy Database
Migrations

flask-migrate https://flask-migrate.readthedocs.io/en/latest/

API Schema flask-marshmallow https://flask-marshmallow.readthedocs.io/en/latest/
API Docs flask-apispec https://flask-apispec.readthedocs.io/en/latest/usage.

html
API Schema flask-marshmallow https://flask-marshmallow.readthedocs.io/en/latest/
Server Hosting Linode https://www.linode.com/

To gain a better sense of web development in flask and many of the frameworks/modules used in this project, I highly
recommend either read or working through in its entirety the Flask Mega Tutorial by Miguel Grinberg. It is highly
informative. Much of this project close resembles the code in that tutorial. In particular, chapters 1-4, 17-19, and 23
are must reads.

What is a REST API?

To steal language from Redhat linux’s documentation:

A REST API (also known as RESTful API) is an application programming interface (API or web API)
that conforms to the constraints of REST architectural style and allows for interaction with RESTful web
services. REST stands for representational state transfer and was created by computer scientist Roy Field-
ing.

An API is a set of definitions and protocols for building and integrating application software. It’s some-
times referred to as a contract between an information provider and an information user—establishing the
content required from the consumer (the call) and the content required by the producer (the response). For

5

https://docs.docker.com/
https://docs.docker.com/compose/
https://dev.mysql.com/doc/refman/5.7/en/
https://flask.palletsprojects.com/en/2.1.x/
https://flask-sqlalchemy.palletsprojects.com/en/2.x/
https://flask-migrate.readthedocs.io/en/latest/
https://flask-marshmallow.readthedocs.io/en/latest/
https://flask-apispec.readthedocs.io/en/latest/usage.html
https://flask-apispec.readthedocs.io/en/latest/usage.html
https://flask-marshmallow.readthedocs.io/en/latest/
https://www.linode.com/
https://blog.miguelgrinberg.com/post/the-flask-mega-tutorial-part-i-hello-world
https://www.redhat.com/en/topics/api/what-is-a-rest-api

SRDP Database & API, Release 0.1

example, the API design for a weather service could specify that the user supply a zip code and that the
producer reply with a 2-part answer, the first being the high temperature, and the second being the low.

In other words, if you want to interact with a computer or system to retrieve information or perform a
function, an API helps you communicate what you want to that system so it can understand and fulfill the
request.

You can think of an API as a mediator between the users or clients and the resources or web services
they want to get. It’s also a way for an organization to share resources and information while maintaining
security, control, and authentication—determining who gets access to what.

So what the hell does that mean in layman’s terms? This blog provides a nice explanation.

In this project, the API is a web service that relies on HTTP protocol to send and receive requests and data. However,
an API need to necessarily be a web service.

Note: This project is under active development.

6 Chapter 3. How are the Database and API implemented?

https://idratherbewriting.com/learnapidoc/docapis_what_is_a_rest_api.html

CHAPTER

FOUR

CONTENTS

4.1 Codebase Overview

Here you will find a high-level overview of the codebase, the directory structure, and each of the constituent pieces
here. Even if you do not understand everything at first, I encourage you to keep reading. At minimum you will gain
a sense of what each part of the codebase is functionally responsible for and how they pieces fit together. This is the
essential for proper debugging.

4.1.1 Directory Structure

The project has the directory structure shown below.

srdp-database
app

administrator
api
auth
errors
main
template_filters
__init__.py
api_spec.py
email.py
models.py

db
deployment
docs

source
examples

api
migrations

versions
tests
venv

bin
include

7

SRDP Database & API, Release 0.1

lib
lib64 -> lib

.env.example
babel.cfg
boot.sh
config.py
docker-compose.yml
Dockerfile
launch.sh
LICENSE
Procfile
pyproject.toml
README.rst
requirements.txt
runtime.txt
srdp.py
Vagrantfile

4.1.2 Docker

The codebase relies on docker to containerize the web app and MySQL database. Containerizing each componenet
allows for painless deployment across a broad array of servers / cloud providers with minimal server-side configuration
(apart from setting up a reverse proxy). Each is treated as an independent microservice and their network topology
is defined in docker-compose.yml. This should be a first point of reference to gain a sense of how the pieces of the
application work together at a high-level.

docker-compose.yml spins up two containers. The first is an image of a MySQL database version 5.7 and uses two
volumnes: the config settings in db/custom.cnf and /var/lib/mysql which is where the database is mounted on the local
machine so that data can persist beyond sessions (in case the container is stopped, the data will still exist when it is spun
back up). The second is a containerized version of the Flask API web app which is launched by calling Dockerfile in the
parent directory. This custom docker file configures the container environment (OS flavor, pre-installed dependencies,
etc.) and finishes by calling boot.sh which actually launches the web app. Both containers live inside a private networks
entitled ‘dbnet’. This means that only they can see and communicate with each other apart from a single port, 5000,
which is mapped to port 5000 on the localhost. All requests to the API occur through this gateway.

Docker provides great documentation on Docker Compose for learning how to write (and understand) orchestration
files for different services.

4.1.3 Database

There are handful pieces that make the database tick. The first is the database itself which is a virtual instance running in
a docker container. As noted above, this container is linked with a volume on the local device so that data persists across
launch and tear down (whenever the app is updated). The second piece is the .env file which specifies configuration
variables for the database, including the database name, the user, the password, the root password, and the connection
URI that points to the containerized database. This information is read into config.py, which stores all configruation
parameters for the Flask app, and then passed to Flask-SQLAlchemy on app launch to create the actual connection
between the app and database. The final piece is Flask-SQLAlchemy which is a wrapper around the SQLAlchemy a
python ORM module.

There is zero SQL involved in creating and defining the database and tables. All of this is handled via SQLAlchemy
in app/models.py. Each class in the file corresponds to a table in the database and each class variable corresponds to

8 Chapter 4. Contents

https://docs.docker.com/compose/

SRDP Database & API, Release 0.1

a field in that table. Classes may also have methods for performing CRUD actions on the table, but these are pure
python functions and are completely independent of the database itself. All new tables or modifications to existing
tables happen in app/models.py.

4.1.4 Flask Logic

The remainder of the codebase consists flask app logic. The flask application follows an “application factory” approach.
An app factory approach relies on modular design, where multiple versions of the app can be instantiated with varying
configuration parameters. In addition, the application is broken down into modular parts called “blueprints” which
groups together similar logic.

The application factory design can be seen in app/__init__.py. Each of the flask extensions are first created and then
initialized with the app in the create_app() function. Thereafter, each blueprint is registered with the app, creating
a unique namespace for all the routes within that blueprint. Finally, logging is set up to write to a local log files or
a mail server if one is set up (see here <https://blog.miguelgrinberg.com/post/the-flask-mega-tutorial-part-x-email-
support/page/4>`_). The appliation can easily work with a gmail account with SMTP and third-party app access
enabled. This email address is set in .env and the functions for sending emails are located in app/email.py.

Finally, we turn to the API routes and specs, the meat and potatoes of the app. The specification for the API is located
in app/api_specs.py. This file calls the apispec library with marshmallow and flask plugins to generate the website’s
Swagger docs page for the api routes and database table schemas.

The api/ directory contains a file for each of the database tables as well as a few utility files for things such authentica-
tion/authorization and error handling. Each of these files contains routes for CRUD (create, retrieve, update, delete) ac-
tions via their respective HTTP methods (POST, GET, PUT, DELETE). Whenever a new table is added to the database,
a new file should be added with the appropriate routes/methods. A new schemas will also need to be defined in
app/apispec.py

You will notice there are other blueprint directories such as auth, administrator and main. These are currently unused
but contain some initial logic if a future developer wants to add a full-fledged front-end UI to the website. Administrator
stores logic for an flask-admin administrator portal. Auth contains routes for user authentication, and main serves as a
catch all for all other front-end routes.

4.2 Developer Manual

Here you will find a “how to” developer’s manual for doing a number of key tasks ranging from installing the application
on your local machine as well as on a production server all the way to modifying and update the database and API as
the project needs change and grow.

4.2.1 Installation

Installation steps vary depending on whether you’re installing the app on a local machine for development and testing
or trying to put it into production. However, regardless of which of these two situations you’re in, you’ll need to install
docker and docker compose on the machine. Installation instructions for each of these can be found below:

• Get Docker

• Install Docker Compose

4.2. Developer Manual 9

https://flask.palletsprojects.com/en/2.1.x/patterns/appfactories/
https://apispec.readthedocs.io/en/latest/
https://marshmallow.readthedocs.io/en/stable/
https://swagger.io/docs/
https://srdp.ea-jones.com/api/docs/
https://docs.docker.com/get-docker/
https://docs.docker.com/get-docker/

SRDP Database & API, Release 0.1

Local Machine

Production Server

4.2.2 Configuration

4.2.3 Launching

4.2.4 Admin

4.2.5 Working with Database Models

4.2.6 Working with API routes

4.2.7 Updating API Documentation

4.3 API Documentation

The end user API route documentation can be found at https://srdp.ea-jones.com.

10 Chapter 4. Contents

	What is SRDP?
	Why Do We Provide a Database API?
	How are the Database and API implemented?
	Contents
	Codebase Overview
	Directory Structure
	Docker
	Database
	Flask Logic

	Developer Manual
	Installation
	Local Machine
	Production Server

	Configuration
	Launching
	Admin
	Working with Database Models
	Working with API routes
	Updating API Documentation

	API Documentation

